Thursday, March 31, 2011

How can you re-arrange items in an array based on its dependencies? and also detect any cyclic dependency

Given the type:

class Field{
    public string Name{get;set;}
    public string[] DependsOn{get;set;}
}

Let's say I have an array of Field items:

List<Field> fields = new List<Field>();
fields.Add(new Field() { Name = "FirstName" });
fields.Add(new Field() { Name = "FullName", 
                         DependsOn = new[] {"FirstName","LastName"}});
fields.Add(new Field() { Name = "Age", 
                         DependsOn = new[] { "DateOfBirth" } });
fields.Add(new Field() { Name = "LastName" });
fields.Add(new Field() { Name = "DateOfBirth" });

So clearly we get our items in the following order:

  1. FirstName
  2. FullName
  3. Age
  4. LastName
  5. DateOfBirth

My first question: What is the best way to re-arrange the items in my list/array so that dependent columns (FullName & Age) are placed after the columns they depend on i.e. something like this:

  1. FirstName
  2. LastName
  3. FullName
  4. DateOfBirth
  5. Age

So fields like Age always come after DateOfBirth which it depends on.

My second question: Is there a way to detect cyclic dependencies? i.e. when
Field1 depends on Field2 and
Field2 depends on Field3 and
Field3 depends on Field1

So we don't get caught in a circle. e.g. when you finish college, you need 2 years of working experience to get a job. But to get the working experience, you first of all need to have the job.

From stackoverflow
  • Sounds like you need to sort these items in topological order. There are loads of pages on the web, probably Wikipedia is a good place to start: http://en.wikipedia.org/wiki/Topological_sort

  • Thanks for the tip Grzenio I actually found something similar in java at http://www.java2s.com/Code/Java/Collections-Data-Structure/Topologicalsorting.htm

    Below is the C# adaptation:

    class Class1
    {
        public static void Run()
        {
            doTopologicalTest();
        }
    
        private static void doTopologicalTest()
        {
            List<Field> fields = new List<Field>();
            fields.Add(new Field() { Name = "FirstName" });
            fields.Add(new Field()
            {
                Name = "FullName",
                DependsOn = new[] { "FirstName", "LastName" }
            });
            fields.Add(new Field()
            {
                Name = "Age",
                DependsOn = new[] { "DateOfBirth" }
            });
            fields.Add(new Field() { Name = "LastName" });
            fields.Add(new Field() { Name = "DateOfBirth" });
    
            foreach (var field in fields)
            {
                Console.WriteLine(field.Name);
                if(field.DependsOn != null)
                    foreach (var item in field.DependsOn)
                    {
                        Console.WriteLine(" -{0}",item);
                    }
            }
    
            Console.WriteLine("\n...Sorting...\n");
    
            int[] sortOrder = getTopologicalSortOrder(fields);
    
            for (int i = 0; i < sortOrder.Length; i++)
            {
                var field = fields[sortOrder[i]];
                Console.WriteLine(field.Name);
                if (field.DependsOn != null)
                    foreach (var item in field.DependsOn)
                    {
                        Console.WriteLine(" -{0}", item);
                    }
            }
    
        }
    
        private static int[] getTopologicalSortOrder(List<Field> fields)
        {
            TopologicalSorter g = new TopologicalSorter(fields.Count);
            Dictionary<string, int> _indexes = new Dictionary<string, int>();
    
            //add vertices
            for (int i = 0; i < fields.Count; i++)
            {
                _indexes[fields[i].Name.ToLower()] = g.AddVertex(i);
            }
    
            //add edges
            for (int i = 0; i < fields.Count; i++)
            {
                if (fields[i].DependsOn != null)
                {
                    for (int j = 0; j < fields[i].DependsOn.Length; j++)
                    {
                        g.AddEdge(i,
                            _indexes[fields[i].DependsOn[j].ToLower()]);
                    }
                }
            }
    
            int[] result = g.Sort();
            return result;
    
        }
    
    
        class Field
        {
            public string Name { get; set; }
            public string[] DependsOn { get; set; }
        }
    }
    

    And the Code for TopologicalSort.cs

    class TopologicalSorter
    {
        #region - Private Members -
    
        private readonly int[] _vertices; // list of vertices
        private readonly int[,] _matrix; // adjacency matrix
        private int _numVerts; // current number of vertices
        private readonly int[] _sortedArray;
    
        #endregion
    
        #region - CTors -
    
        public TopologicalSorter(int size)
        {
            _vertices = new int[size];
            _matrix = new int[size, size];
            _numVerts = 0;
            for (int i = 0; i < size; i++)
                for (int j = 0; j < size; j++)
                    _matrix[i, j] = 0;
            _sortedArray = new int[size]; // sorted vert labels
        }
    
        #endregion
    
        #region - Public Methods -
    
        public int AddVertex(int vertex)
        {
            _vertices[_numVerts++] = vertex;
            return _numVerts - 1;
        }
    
        public void AddEdge(int start, int end)
        {
            _matrix[start, end] = 1;
        }
    
        public int[] Sort() // toplogical sort
        {
            while (_numVerts > 0) // while vertices remain,
            {
                // get a vertex with no successors, or -1
                int currentVertex = noSuccessors();
                if (currentVertex == -1) // must be a cycle                
                    throw new Exception("ERROR: Graph has cycles");
    
                // insert vertex label in sorted array (start at end)
                _sortedArray[_numVerts - 1] = _vertices[currentVertex];
    
                deleteVertex(currentVertex); // delete vertex
            }
    
            // vertices all gone; return sortedArray
            return _sortedArray;
        }
    
        #endregion
    
        #region - Private Helper Methods -
    
        // returns vert with no successors (or -1 if no such verts)
        private int noSuccessors()
        {
            for (int row = 0; row < _numVerts; row++)
            {
                bool isEdge = false; // edge from row to column in adjMat
                for (int col = 0; col < _numVerts; col++)
                {
                    if (_matrix[row, col] > 0) // if edge to another,
                    {
                        isEdge = true;
                        break; // this vertex has a successor try another
                    }
                }
                if (!isEdge) // if no edges, has no successors
                    return row;
            }
            return -1; // no
        }
    
        private void deleteVertex(int delVert)
        {
            // if not last vertex, delete from vertexList
            if (delVert != _numVerts - 1)
            {
                for (int j = delVert; j < _numVerts - 1; j++)
                    _vertices[j] = _vertices[j + 1];
    
                for (int row = delVert; row < _numVerts - 1; row++)
                    moveRowUp(row, _numVerts);
    
                for (int col = delVert; col < _numVerts - 1; col++)
                    moveColLeft(col, _numVerts - 1);
            }
            _numVerts--; // one less vertex
        }
    
        private void moveRowUp(int row, int length)
        {
            for (int col = 0; col < length; col++)
                _matrix[row, col] = _matrix[row + 1, col];
        }
    
        private void moveColLeft(int col, int length)
        {
            for (int row = 0; row < length; row++)
                _matrix[row, col] = _matrix[row, col + 1];
        }
    
        #endregion
    }
    

    ....

0 comments:

Post a Comment